Nº 10

МОУ ВШ Подписано цифровой подписью: МОУВШ№ 10 Дата: 2021.09.01

15:16:03 +03'00'

Муниципальное общеобразовательное учреждение «Вечерняя школа №10 Кировского района Волгограда»

Рассмотрено

на заседании методического объединения

учителей

Руководитель МО _ И.Я. Суняйкина августа 2021 г.

Согласовано заместитель директора Е.Т. Пантелеева

27 » августа 2021 г.

Утверждаю Директор МОУ ВШ № 10 — О.В. Дьячкова « 27 » августа 2021 г.

РАБОЧАЯ ПРОГРАММА

Название учебного курса, предмета: Информатика

Уровень образования: среднее общее образование

Уровень программы: базовая

Автор-составитель: ГОлина Любовь Николаевна

Срок реализации: 3 года

Волгоград

2021

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа по информатике для 10-11 классов (базовый уровень) разработана в соответствии с Положением о структуре, порядке разработки и утверждения основных образовательных программ начального, общего, среднего общего образования в МБОУ $B(C) \coprod \mathcal{N}_{2} 1$, соответствующих федеральному компоненту государственного образовательного стандарта, на основе требований *следующих документов*:

Федеральный уровень

- 1. Федеральный закон от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации»;
- 2. Федеральный государственный образовательный стандарт среднего общего образования, утвержденный приказом Министерства образования и науки Российской Федерации от 17.05.2012 № 413;
- 3. Приказ Минпросвещения России от 22.03.2022 г. № 115 "Об утверждении Порядка организации и осуществления образовательной деятельности по основным общеобразовательным программам образовательным программам начального общего, основного общего и среднего общего образования" (с изменениями. и дополнениями от 07.10.2022 г.)
- 4. Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровлении детей и молодёжи, утвержденных постановлением Главного государственного санитарного врача Российской Федерации от 28.09.2020 № 28.
- 5. Постановление Главного государственного санитарного врача Российской Федерации от 28 января 2021 г. № 2 «Об утверждении санитарных правил и норм СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания»;

Школьный уровень

- 1. Устав муниципального бюджетного общеобразовательного учреждения города Новосибирска «Вечерняя (сменная) школа № 1";
- 2. Локальные акты МБОУ В(С)Ш № 1

Школа реализует общеобразовательные программы основного и среднего общего образования, учитывающие возрастные особенности обучающихся, связанные с дальнейшим получением ими профессионального образования, и разработанные на основе государственных образовательных стандартов.

Цели и задачи курса

Данная рабочая программа рассчитана на учащихся, освоивших базовый курс информатики и ИКТ в основной школе, предусматривает изучение тем образовательного стандарта, распределяет учебные часы по разделам курса и предполагает последовательность изучения разделов и тем учебного курса

«Информатика и ИКТ» с учетом межпредметных и внутрипредметных связей, логики учебного процесса, определяет количество практических работ, необходимых для формирования информационно - коммуникационной компетентности учащихся.

Изучение информатики и информационных технологий в средней школе направлено на достижение следующих целей:

- ✓ освоение системы базовых знаний, отражающих вклад информатики в формирование современной научной картины мира, роль информационных процессов в обществе, биологических и технических системах;
- ✓ овладение умениями применять, анализировать, преобразовывать информационные модели реальных объектов и процессов,
- ✓ используя при этом информационные и коммуникационные технологии (ИКТ), в том числе при изучении других школьных дисциплин;
- ✓ развитие познавательных интересов, интеллектуальных и творческих способностей путем освоения и использования методов информатики и средств ИКТ при изучении различных учебных предметов;
- ✓ воспитание ответственного отношения к соблюдению этических и правовых норм информационной деятельности;
- ✓ приобретение опыта использования информационных технологий в индивидуальной и коллективной учебной и познавательной, в том числе проектной деятельности.

Рабочая программа воспитания МБОУ В(С)Ш № 1 реализуется в том числе и через использование воспитательного потенциала уроков математики. Эта работа осуществляется в следующих формах:

- Побуждение обучающихся соблюдать на уроке общепринятые нормы поведения, правила общения со старшими (педагогическими работниками) и сверстниками (обучающимися), принципы учебной дисциплины и самоорганизации.
- Привлечение внимания обучающихся к ценностному аспекту изучаемых на уроках предметов, явлений, событий через:
- обращение внимания на нравственные аспекты научных открытий, которые изучаются в данный момент на уроке; на представителей ученых, связанных с изучаемыми в данный момент темами, на тот вклад, который они внесли в развитие нашей страны и мира, на достойные подражания примеры их жизни, на мотивы их поступков;
- Использование воспитательных возможностей содержания учебного предмета для формирования у обучающихся российских традиционных духовнонравственных и социокультурных ценностей через подбор соответствующих задач для решения, проблемных ситуаций для обсуждения в классе

- Включение в урок игровых процедур, которые помогают поддержать мотивацию обучающихся к получению знаний, налаживанию позитивных межличностных отношений в классе, помогают установлению доброжелательной атмосферы во время урока.
- Применение на уроке интерактивных форм работы, стимулирующих познавательную мотивацию обучающихся.
- Применение групповой работы или работы в парах, которые способствуют развитию навыков командной работы и взаимодействию с другими обучающимися.
- Выбор и использование на уроках методов, методик, технологий, оказывающих воспитательное воздействие на личность в соответствии с воспитательным идеалом, целью и задачами воспитания.
- Инициирование и поддержка исследовательской деятельности школьников в форме включения в урок различных исследовательских заданий и задач, что дает возможность обучающимся приобрести навыки самостоятельного решения теоретической проблемы, генерирования и оформления собственных гипотез, уважительного отношения к чужим идеям, публичного выступления, аргументирования и отстаивания своей точки зрения.
- Установление уважительных, доверительных, неформальных отношений между учителем и учениками, создание на уроках эмоционально-комфортной среды.

Общая характеристика учебного предмета

Информатика и ИКТ — предмет, непосредственно востребуемый во всех видах профессиональной деятельности и различных траекториях продолжения обучения. Подготовка по этому предмету на базовом уровне способствует формированию современного научного мировоззрения, развитию интеллектуальных способностей и познавательных интересов школьников; освоение базирующихся на этой науке информационных технологий необходимо школьникам, как в самом образовательном процессе, так и в их повседневной и будущей жизни.

Систематизирующей основой содержания предмета «Информатика», изучаемого на разных ступенях школьного образования, является единая содержательная структура образовательной области, которая включает в себя следующие разделы:

- 1. Теоретические основы информатики.
- 2. Средства информатизации (технические и программные).
- 3. Информационные технологии.
- 4. Социальная информатика.

Приоритетной задачей курса информатики основной школы является освоение информационной технологии решения задачи (которую не следует смешивать с

изучением конкретных программных средств). При этим следует отметить, что в основной решаются типовые задачи с использованием типовых программных средств. Приоритетными объектами изучения информатики в старшей школе являются информационные системы, преимущественно автоматизированные информационные системы, связанные с информационными процессами, и информационные технологии, рассматриваемые с позиций системного подхода. Это связано с тем, что базовый уровень старшей школы, ориентирован, прежде всего, на учащихся — гуманитариев. При этом, сам термин "гуманитарный" понимается как синоним широкой, "гуманитарной", культуры, а не простое противопоставление "естественнонаучному" образованию. При таком подходе важнейшая роль отводиться методологии решения типовых задач из различных образовательных областей. Основным моментом этой методологии является представления данных в виде информационных систем и моделей с целью последующего использования типовых программных средств. Это позволяет:

- ✓ обеспечить преемственность курса информатики основной и старшей школы (типовые задачи типовые программные средства в основной школе; нетиповые задачи типовые программные средства в рамках базового уровня старшей школы);
- ✓ систематизировать знания в области информатики и информационных технологий, полученные в основной школе, и углубить их с учетом выбранного профиля обучения;
- ✓ заложить основу для дальнейшего профессионального обучения, поскольку современная информационная деятельность носит, по преимуществу, системный характер;
- ✓ сформировать необходимые знания и навыки работы с информационными моделями и технологиями, позволяющие использовать их при изучении других предметов.

Основная задача базового уровня старшей школы состоит в изучении общих закономерностей функционирования, создания и применения информационных систем, преимущественно автоматизированных. С точки зрения содержания это позволяет развить основы системного видения мира, расширить возможности информационного моделирования, обеспечив тем самым значительное расширение и углубление межпредметных связей информатики с другими дисциплинами. С точки зрения деятельности, это дает возможность сформировать методологию использования основных автоматизированных информационных систем в решении конкретных задач, связанных c анализом И представлением информационных процессов:

- ✓ автоматизированные информационные системы (АИС) хранения массивов информации (системы управления базами данных, информационно поисковые системы, геоинформационные системы);
- ✓ АИС обработки информации (системное программное обеспечение, инструментальное программное обеспечение, автоматизированное рабочее место, офисные пакеты);
- ✓ АИС передачи информации (сети, телекоммуникации);
- ✓ АИС управления (системы автоматизированного управления, автоматизированные системы управления, операционная система как система управления компьютером).

Место учебного предмета в учебном плане

Курс «Информатика и ИКТ» является общеобразовательным курсом базового уровня, изучаемым в 10-11 классах. Курс ориентирован на учебный план, объемом 69 учебных часов, согласно ФК БУП от 2004 года. Данный учебный курс осваивается учащимися после изучения базового курса «Информатика и ИКТ» в основной школе (в 8-9 классах).

Рабочая программа разработана в соответствии с Основной образовательной программой основного общего образования МБОУ В(С)Ш №1.

Данная программа рассчитана на 2 года – 10 – 11 класс.

Общее число учебных часов – 69 часов.

Центральными понятиями, вокруг которых выстраивается методическая являются «информационные процессы», система курса, «информационные «информационные модели», «информационные системы», технологии». Содержание учебника инвариантно к типу ПК и программного обеспечения. Поэтому теоретическая составляющая курса не зависит от используемых в школе моделей компьютеров, операционных систем и прикладного программного обеспечения. В меньшей степени такая независимость присутствует в практикуме. Практикум состоит из трех разделов. Первый раздел «Основы технологий» предназначен для повторения и закрепления навыков работы с программными средствами, изучение которых происходило в рамках базового курса основной школы. К таким программным средствам относятся операционная система и прикладные программы общего назначения (текстовый процессор, табличный процессор, программа подготовки презентаций). Задания ЭТОГО раздела ориентированы на MicrosoftWindows – MicrosoftOffice.

Требования к уровню усвоения предмета

В результате изучения информатики и информационных технологий ученик должен знать/понимать:

- 1) объяснять различные подходы к определению понятия «информация»;
- 2) различать методы измерения количества информации: вероятностный и алфавитный; знать единицы измерения информации;
- 3) назначение наиболее распространенных средств автоматизации информационной деятельности(текстовых редакторов, текстовых процессоров, графических редакторов, электронных таблиц, баз данных, компьютерных сетей);
- 4) назначение и виды информационных моделей, описывающих реальные объекты или процессы;
 - 5) использование алгоритма как модели автоматизации деятельности;
 - 6) назначение и функции операционных систем;

уметь:

- 1) оценивать достоверность информации, сопоставляя различные источники;
- 2) распознавать информационные процессы в различных системах;
- 3) использовать готовые информационные модели, оценивать их соответствие реальному объекту и целям моделирования;
- 4) осуществлять выбор способа представления информации в соответствии с поставленной задачей;
- 5) иллюстрировать учебные работы с использованием средств информационных технологий;
- 6) создавать информационные объекты сложной структуры, в том числе гипертекстовые;
- 7) просматривать, создавать, редактировать, сохранять записи в базах данных;
- 8) осуществлять поиск информации в базах данных, компьютерных сетях и пр.;
- 9) представлять числовую информацию различными способами (таблица, массив, график, диаграмма и пр.);
- 10) соблюдать правила техники безопасности и гигиенические рекомендации при использовании средств ИКТ;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- 1) эффективной организации индивидуального информационного пространства;
 - 2) автоматизации коммуникационной деятельности;
- 3) эффективного применения информационных образовательных ресурсов в учебной деятельности.

Планируемые результаты освоения учебного предмета «Информатика» на уровне среднего общего образования

Освоение учебного предмета «Информатика» на уровне среднего общего образования направлено на достижение обучающимися следующих личностных, метапредметных и предметных результатов.

Личностные результаты

Личностные результаты отражают готовность и способность обучающихся руководствоваться сформированной внутренней позицией личности, системой ценностных ориентаций, позитивных внутренних убеждений, соответствующих традиционным ценностям российского общества, расширение жизненного опыта и опыта деятельности в процессе реализации средствами учебного предмета следующих основных направлений воспитательной деятельности.

Гражданское воспитание:

- осознание своих конституционных прав и обязанностей, уважение закона и правопорядка, соблюдение основополагающих норм информационного права и информационной безопасности;
- готовность противостоять идеологии экстремизма, национализма, ксенофобии, дискриминации по социальным, религиозным, расовым, национальным признакам в виртуальном пространстве.

Патриотическое воспитание:

ценностное отношение к историческому наследию; достижениям России в науке, искусстве, технологиях; понимание значения информатики как науки в жизни современного общества.

Духовно-нравственное воспитание:

- сформированность нравственного сознания, этического поведения;
- способность оценивать ситуацию и принимать осознанные решения, ориентируясь на морально-нравственные нормы и ценности, в том числе в сети Интернет.

Эстетическое воспитание:

- эстетическое отношение к миру, включая эстетику научного и технического творчества;
- способность воспринимать различные виды искусства, в том числе основанные на использовании информационных технологий.

Физическое воспитание:

• сформированность здорового и безопасного образа жизни, ответственного отношения к своему здоровью, том числе и за счёт

соблюдения требований безопасной эксплуатации средств информационных и коммуникационных технологий.

Трудовое воспитание:

- готовность к активной деятельности технологической и социальной направленности, способность инициировать, планировать и самостоятельно выполнять такую деятельность;
- интерес к сферам профессиональной деятельности, связанным с информатикой, программированием и информационными технологиями, основанными на достижениях информатики и научнотехнического прогресса; умение совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы;
- готовность и способность к образованию и самообразованию на протяжении всей жизни.

Экологическое воспитание:

• осознание глобального характера экологических проблем и путей их решения, в том числе с учётом возможностей ИКТ.

Ценности научного познания:

- сформированность мировоззрения, соответствующего современному уровню развития информатики, достижениям научно-технического прогресса и общественной практики, за счёт понимания роли информационных ресурсов, информационных процессов и информационных технологий в условиях цифровой трансформации многих сфер жизни современного общества;
- осознание ценности научной деятельности, готовность осуществлять проектную и исследовательскую деятельность индивидуально и в группе.
- В процессе достижения личностных результатов освоения программы учебного предмета «Информатика» у обучающихся совершенствуется эмоциональный интеллект, предполагающий сформированность:
- саморегулирования, включающего самоконтроль, умение принимать ответственность за своё поведение, способность адаптироваться к эмоциональным изменениям и проявлять гибкость, быть открытым новому;
- внутренней мотивации, включающей стремление к достижению цели и успеху, оптимизм, инициативность, умение действовать, исходя из своих возможностей;

- эмпатии, включающей способность понимать эмоциональное состояние других, учитывать его при осуществлении коммуникации, способность к сочувствию и сопереживанию;
- социальных навыков, включающих способность выстраивать отношения с другими людьми, заботиться, проявлять интерес и разрешать конфликты.

Метапредметные результаты

Метапредметные результаты освоения образовательной программы по информатике отражают овладение универсальными учебными действиями — познавательными, коммуникативными, регулятивными.

Универсальные познавательные действия

Базовые логические действия:

- самостоятельно формулировать и актуализировать проблему, рассматривать её всесторонне;
- устанавливать существенный признак или основания для сравнения, классификации и обобщения;
- определять цели деятельности, задавать параметры и критерии их достижения;
- выявлять закономерности и противоречия в рассматриваемых явлениях;
- разрабатывать план решения проблемы с учётом анализа имеющихся материальных и нематериальных ресурсов;
- вносить коррективы в деятельность, оценивать соответствие результатов целям, оценивать риски последствий деятельности;
- координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;
- развивать креативное мышление при решении жизненных проблем.

Базовые исследовательские действия:

- владеть навыками учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способностью и готовностью к самостоятельному поиску методов решения практических задач, применению различных методов познания;
- овладение видами деятельности по получению нового знания, его интерпретации, преобразованию и применению в различных учебных ситуациях, в том числе при создании учебных и социальных проектов;
- формирование научного типа мышления; владение научной терминологией, ключевыми понятиями и методами;

- ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- выявлять причинно-следственные связи и актуализировать задачу, выдвигать гипотезу её решения, находить аргументы для доказательства своих утверждений, задавать параметры и критерии решения;
- анализировать полученные в ходе решения задачи результаты, критически оценивать их достоверность, прогнозировать изменение в новых условиях;
- давать оценку новым ситуациям, оценивать приобретённый опыт;
- осуществлять целенаправленный поиск переноса средств и способов действия в профессиональную среду;
- уметь переносить знания в познавательную и практическую области жизнедеятельности;
- уметь интегрировать знания из разных предметных областей;
- выдвигать новые идеи, предлагать оригинальные подходы и решения; ставить проблемы и задачи, допускающие альтернативные решения.

Работа с информацией:

- владеть навыками получения информации из источников разных типов, самостоятельно осуществлять поиск, анализ, систематизацию и интерпретацию информации различных видов и форм представления;
- создавать тексты в различных форматах с учётом назначения информации и целевой аудитории, выбирая оптимальную форму представления и визуализации;
- оценивать достоверность, легитимность информации, её соответствие правовым и морально-этическим нормам;
- использовать средства информационных и коммуникационных технологий в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;
- владеть навыками распознавания и защиты информации, информационной безопасности личности.
- Универсальные коммуникативные действия

Общение:

• осуществлять коммуникации во всех сферах жизни;

- распознавать невербальные средства общения, понимать значение социальных знаков, распознавать предпосылки конфликтных ситуаций и уметь смягчать конфликты;
- владеть различными способами общения и взаимодействия; аргументированно вести диалог;
- развёрнуто и логично излагать свою точку зрения.

Совместная деятельность:

- понимать и использовать преимущества командной и индивидуальной работы;
- выбирать тематику и методы совместных действий с учётом общих интересов и возможностей каждого члена коллектива;
- принимать цели совместной деятельности, организовывать и координировать действия по её достижению: составлять план действий, распределять роли с учётом мнений участников, обсуждать результаты совместной работы;
- оценивать качество своего вклада и каждого участника команды в общий результат по разработанным критериям;
- предлагать новые проекты, оценивать идеи с позиции новизны, оригинальности, практической значимости;
- осуществлять позитивное стратегическое поведение в различных ситуациях, проявлять творчество и воображение, быть инициативным.
- Универсальные регулятивные действия

Самоорганизация:

- самостоятельно осуществлять познавательную деятельность, выявлять проблемы, ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- самостоятельно составлять план решения проблемы с учётом имеющихся ресурсов, собственных возможностей и предпочтений;
- давать оценку новым ситуациям;
- расширять рамки учебного предмета на основе личных предпочтений;
- делать осознанный выбор, аргументировать его, брать ответственность за решение;
- оценивать приобретённый опыт;
- способствовать формированию и проявлению широкой эрудиции в разных областях знаний, постоянно повышать свой образовательный и культурный уровень.

Самоконтроль:

- давать оценку новым ситуациям, вносить коррективы в деятельность, оценивать соответствие результатов целям;
- владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований; использовать приёмы рефлексии для оценки ситуации, выбора верного решения;
- уметь оценивать риски и своевременно принимать решения по их снижению;
- принимать мотивы и аргументы других при анализе результатов деятельности.

Принятие себя и других:

- принимать себя, понимая свои недостатки и достоинства;
- принимать мотивы и аргументы других при анализе результатов деятельности;
- признавать своё право и право других на ошибки;
- развивать способность понимать мир с позиции другого человека.

Предметные результаты

- владение представлениями о роли информации и связанных с ней процессов в природе, технике и обществе; понятиями «информация», «информационный процесс», «система», «компоненты системы», «системный эффект», «информационная система», «система управления»; владение методами поиска информации в сети Интернет; умение критически оценивать информацию, полученную из сети Интернет; умение характеризовать большие данные, приводить примеры источников их получения и направления использования;
- понимание основных принципов устройства и функционирования современных стационарных и мобильных компьютеров; тенденций развития компьютерных технологий; владение навыками работы с операционными системами, основными видами программного обеспечения для решения учебных задач по выбранной специализации;
- наличие представлений о компьютерных сетях и их роли в современном мире; об общих принципах разработки и функционирования интернет-приложений;
- понимание угроз информационной безопасности, использование методов и средств противодействия этим угрозам, соблюдение мер безопасности, предотвращающих незаконное распространения персональных данных; соблюдение требований техники безопасности и гигиены при работе с компьютерами и другими компонентами

- цифрового окружения; понимание правовых основ использования компьютерных программ, баз данных и материалов, размещённых в сети Интернет;
- понимание основных принципов дискретизации различных видов информации; умение определять информационный объём текстовых, графических и звуковых данных при заданных параметрах дискретизации;
- умение строить неравномерные коды, допускающие однозначное декодирование сообщений (префиксные коды);
- владение теоретическим аппаратом, позволяющим осуществлять представление заданного натурального числа в различных системах счисления; выполнять преобразования логических выражений, используя законы алгебры логики; определять кратчайший путь во взвешенном графе и количество путей между вершинами ориентированного ациклического графа;
- умение читать и понимать программы, реализующие несложные алгоритмы обработки числовых и текстовых данных (в том числе массивов и символьных строк) на выбранном для изучения универсальном языке программирования высокого уровня (Паскаль, Python, Java, C++, C#); анализировать алгоритмы с использованием таблиц трассировки; определять без использования компьютера результаты выполнения несложных программ, включающих циклы, ветвления и подпрограммы, при заданных исходных данных; модифицировать готовые программы для решения новых задач, использовать их в своих программах в качестве подпрограмм (процедур, функций);
- умение реализовывать на выбранном ДЛЯ изучения языке программирования высокого уровня (Паскаль, Python, Java, C++, C#) типовые алгоритмы обработки чисел, числовых последовательностей и массивов: представление числа в виде набора простых сомножителей; нахождение максимальной (минимальной) цифры натурального числа, записанного в системе счисления с основанием, не превышающим 10; вычисление обобщённых характеристик элементов массива или числовой последовательности (суммы, произведения, среднего арифметического, минимального И максимального элементов; количества элементов, удовлетворяющих заданному условию); сортировку элементов массива;
- умение создавать структурированные текстовые документы и демонстрационные материалы с использованием возможностей

современных программных средств и облачных сервисов; умение использовать табличные (реляционные) базы данных, в частности, составлять запросы к базам данных (в том числе запросы с вычисляемыми полями), выполнять сортировку и поиск записей в базе данных; наполнять разработанную базу данных; умение использовать электронные таблицы для анализа, представления и обработки данных (включая вычисление суммы, среднего арифметического, наибольшего и наименьшего значений, решение уравнений);

- умение использовать компьютерно-математические модели для анализа объектов и процессов: формулировать цель моделирования, выполнять анализ результатов, полученных в ходе моделирования; оценивать адекватность модели моделируемому объекту или процессу; представлять результаты моделирования в наглядном виде;
- умение организовывать личное информационное пространство с использованием различных цифровых технологий; понимание возможностей цифровых сервисов государственных услуг, цифровых образовательных сервисов; понимание возможностей и ограничений технологий искусственного интеллекта в различных областях; наличие представлений об использовании информационных технологий в различных профессиональных сферах.

Учебно-тематический план

No	Тема	Количество часов		
		10 класс	11 класс	Всего
1	Введение. Структура информатики.	1		1
2	Информация.	5		5
3	Информационные процессы	7		7
4	Программирование обработки информации	22		22
5	Информационные системы и базы данных		10	10
6	Интернет		8	8
7	Информационное моделирование		12	12
8	Социальная информатика		3	3
9	Итоговый контроль знаний		1	1
		35	34	69

Содержание учебного предмета 10класс

Введение. Структура информатики – 1 ч.

Цели и задачи изучения курса в 10–11 классах; из каких частей состоит предметная область информатики.

Информация – 5 ч.

Три философские концепции информации. Понятие информации в частных науках: нейрофизиологии, генетике, кибернетике, теории информации. Что такое язык представления информации; какие бывают языки. Понятия «кодирование» и «декодирование» информации. Примеры технических систем кодирования информации: азбука Морзе, телеграфный код Бодо. Понятия «шифрование», «дешифрование». Сущность объемного (алфавитного) подхода к измерению информации. Определение бита с алфавитной т.з. Связь между размером алфавита и информационным весом символа (в приближении равновероятности символов). Связь между единицами измерения информации: бит, байт, Кб, Мб, Гб. Сущность содержательного (вероятностного) подхода к измерению информации. Определение бита с позиции содержания сообщения.

<u>Практика на компьютере:</u> решение задач на измерение информации заключенной в тексте, с алфавитной т.з. (в приближении равной вероятности символов), а также заключенной в сообщении, используя содержательный подход (в равновероятном приближении), выполнение пересчета количества информации в разные единицы.

Информационные процессы – 7 ч.

Что такое система, информационные процессы в естественных и искусственных системах. История развития носителей информации. Современные (цифровые, компьютерные) типы носителей информации и их основные характеристики. Модель передачи информации

К. Шеннона по техническим каналам связи. Основные характеристики каналов связи: скорость передачи, пропускная способность. Понятие «шум» и способы защиты от шума.

Основные типы задач обработки информации. Понятие исполнителя обработки информации. Понятие алгоритма обработки информации. Что такое «алгоритмические машины» в теории алгоритмов. Определение и свойства алгоритма управления алгоритмической машиной. Устройство и система команд алгоритмической машины Поста.

<u>Практика на компьютере:</u> автоматическая обработка данных с помощью алгоритмической машины Поста.

Программирование обработки информации -22 ч.

Алгоритмы и величины. Структура алгоритмов. Паскаль – язык структурного программирования. Элементы языка Паскаль и типы данных. Операции, функции и выражения. Оператор присваивания, ввод и вывод данных. Логические величины, операции и выражения. Программирование ветвлений, циклов. Поэтапная разработка решения задачи. Вложенные и итерационные циклы.

Вспомогательные алгоритмы и подпрограммы. Массивы. Организация ввода и вывода данных с использованием файлов. Типовые задачи обработки массивов. Символьный тип данных. Комбинированный тип данных.

11 класс

Технологии использования и разработки информационных систем – 10 ч.

Основные понятия системологии: система, структура, системный эффект, подсистема. Основные свойства систем: целесообразность, целостность. «Системный подход» в науке и практике. Отличие естественных и искусственных системы. Материальные и информационные типы связей действующие в системах. Роль информационных процессов в системах. Состав и структура систем управления. Назначение информационных систем. Состав информационных систем. Разновидности информационных систем.

База данных — основа информационной системы. Понятие базы данных (БД). Модели данных используемые в БД. Основные понятия реляционных БД: запись, поле, тип поля, главный ключ. Определение и назначение СУБД. Основы организации многотабличной БД. Схема БД. Целостность данных. Этапы создания многотабличной БД с помощью реляционной СУБД. Структура команды запроса на выборку данных из БД. Организация запроса на выборку в многотабличной БД. Основные логические операции, используемые в запросах. Правила представления условия выборки на языке запросов и в конструкторе запросов.

<u>Практика на компьютере:</u> освоение простейших приемов работы с готовой базой данных в среде СУБД: открытие БД; просмотр структуры БД в режиме конструктора; просмотр содержимого БД в режимах Форма и Таблица; добавление записей через форму; быстрая сортировка таблицы; использование фильтра; освоение приемов работы с СУБД в процессе создания спроектированной БД. Освоение приемов реализации запросов на выборку с помощью конструктора запросов; создание формы таблицы; создание многотабличной БД; заполнение таблицы данными с помощью формы; отработка приемов реализации сложных запросов на выборку.

Интернет – 8 ч.

Назначение коммуникационных служб Интернета. Назначение информационных служб Интернета. Прикладные протоколы. Основные понятия WWW: web-страница, web-сервер, web-сайт, web-браузер, HTTP-протокол, URL-адрес. Поисковый каталог: организация, назначение. Поисковый указатель: организация, назначение.

<u>Практика на компьютере:</u> знакомство и практическое освоение работы с двумя видами информационных услуг глобальной сети: электронной почтой и телеконференциями; освоение приемов работы с браузером, изучение среды браузера и настройка браузера; освоение приемов извлечения фрагментов из загруженных Web-страниц, их вставка и сохранение в текстовых документах; освоение приемов работы с поисковыми системами Интернета: поиск информации с помощью поискового указателя.

Средства для создания web-страниц. Проектирование web-сайта. Публикация web-сайта. Возможности текстового процессора по созданию web-страниц. Знакомство с элементами HTML и структурой HTML-документа.

<u>Практика на компьютере:</u> освоение приемов создания Web-страниц и Web-сайтов с помощью текстового процессора; освоение приемов создания Web-страниц и Web-сайтов на языке HTML.

Информационное моделирование – 12 ч.

Компьютерное информационное моделирование. Понятия: величина, имя величины, тип величины, значение величины. Моделирование между величинами. Математическая модель. Формы представления зависимостей между величинами. Использование статистики к решению практических задач. Регрессионная модель. Прогнозирование по регрессионной модели.

<u>Практика на компьютере:</u> получение представления о построении оптимального плана методом линейного программирования; практическое освоение раздела табличного процессора «Поиск решения» для построения оптимального плана.

Социальная информатика – 3 ч.

ресурсы общества. Информационные Составные части рынка информационных ресурсов. Виды информационных услуг. Основные черты информационного общества. Причины информационного кризиса и пути его преодоления. Какие изменения в быту, в сфере образования будут происходить с формированием информационного общества. Основные законодательные акты в информационной сфере. Суть Доктрины информационной безопасности Российской Федерации. Основные правовые и этические нормы в информационной сфере деятельности.

<u>Практика на компьютере:</u> закрепление навыков создания мультимедийных презентаций; изучение, систематизация и наглядное представление учебного материала на тему «Социальная информатика».

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА

Тема 1. Введение. Структура информатики.

Учащиеся должны знать:

- в чем состоят цели и задачи изучения курса в 10 классе;
- из каких частей состоит предметная область информатики.

Тема 2. Информация. Представление информации

Учащиеся должны знать:

- три философские концепции информации;
- понятие информации в частных науках: нейрофизиологии, генетике, кибернетике, теории информации;
- что такое язык представления информации; какие бывают языки;
- понятия «кодирование» и «декодирование» информации;
- примеры технических систем кодирования информации: азбука Морзе, телеграфный код Бодо;
- понятия «шифрование», «дешифрование».

Тема 3. Измерение информации.

Учащиеся должны знать:

- сущность объемного (алфавитного) подхода к измерению информации;
- определение бита с позиции алфавитного подхода;
- связь между размером алфавита и информационным весом символа (в приближении равновероятности символов);
- связь между единицами измерения информации: бит, байт, Кб, Мб, Гб;
- сущность содержательного (вероятностного) подхода к измерению информации;
- определение бита с позиции содержания сообщения.

Учащиеся должны уметь:

- решать задачи на измерение информации, заключенной в тексте, с позиции алфавитного подхода (в приближении равной вероятности символов);
- решать несложные задачи на измерение информации, заключенной в сообщении, используя содержательный подход (в равновероятном приближении);
- выполнять пересчет количества информации в разные единицы.

Тема 4. Представление чисел в компьютере

Учащиеся должны знать:

- основные принципы представления данных в памяти компьютера;
- представление целых чисел;
- диапазоны представления целых чисел без знака и со знаком;

- принципы представления вещественных чисел.

Учащиеся должны уметь:

- получать внутреннее представление целых чисел в памяти компьютера;
- определять по внутреннему коду значение числа.

Тема 5. Представление текста, изображения и звука в компьютере *Учашиеся должны знать*:

- способы кодирования текста в компьютере;
- способы представление изображения; цветовые модели;
- в чем различие растровой и векторной графики;
- способы дискретного (цифрового) представление звука.

Учащиеся должны уметь:

- вычислять размет цветовой палитры по значению битовой глубины цвета;
- вычислять объем цифровой звукозаписи по частоте дискретизации, глубине кодирования и времени записи.

Тема 6. Хранения и передачи информации

Учащиеся должны знать:

- историю развития носителей информации;
- современные (цифровые, компьютерные) типы носителей информации и их основные характеристики;
- модель К. Шеннона передачи информации по техническим каналам связи;
- основные характеристики каналов связи: скорость передачи, пропускная способность;
- понятие «шум» и способы защиты от шума.

Учащиеся должны уметь:

- сопоставлять различные цифровые носители по их техническим свойствам;
- рассчитывать объем информации, передаваемой по каналам связи, при известной скорости передачи.

Тема 7. Обработка информации и алгоритмы

Учащиеся должны знать:

- основные типы задач обработки информации;
- понятие исполнителя обработки информации;
- понятие алгоритма обработки информации.

Учащиеся должны уметь:

- по описанию системы команд учебного исполнителя составлять алгоритмы управления его работой.

Тема 8. Автоматическая обработка информации

Учащиеся должны знать:

- что такое «алгоритмические машины» в теории алгоритмов;
- определение и свойства алгоритма управления алгоритмической машиной;
- устройство и систему команд алгоритмической машины Поста.

Учащиеся должны уметь:

 составлять алгоритмы решения несложных задач для управления машиной Поста.

Тема 9. Информационные процессы в компьютере

Учашиеся должны знать:

- этапы истории развития ЭВМ;
- что такое фон-неймановская архитектура ЭВМ;
- для чего используются периферийные процессоры (контроллеры);
- архитектуру персонального компьютера;
- основные принципы архитектуры суперкомпьютеров.

Тема 10. Алгоритмы, структуры алгоритмов, структурное программирование Учащиеся должны знать

- этапы решения задачи на компьютере;
- что такое исполнитель алгоритмов, система команд исполнителя;
- какими возможностями обладает компьютер как исполнитель алгоритмов;
- систему команд компьютера;
- классификацию структур алгоритмов;
- основные принципы структурного программирования.

Учащиеся должны уметь:

- описывать алгоритмы на языке блок-схем и на учебном алгоритмическом языке;
- выполнять трассировку алгоритма с использованием трассировочных таблии.

Тема 11. Программирование линейных алгоритмов

Учащиеся должны знать

- систему типов данных в Паскале;
- операторы ввода и вывода;
- правила записи арифметических выражений на Паскале;
- оператор присваивания;
- структуру программы на Паскале.

Учащиеся должны уметь:

 составлять программы линейных вычислительных алгоритмов на Паскале.

Тема 12. Логические величины и выражения, программирование ветвлений Учащиеся должны знать

- логический тип данных, логические величины, логические операции;
- правила записи и вычисления логических выражений;
- условный оператор if;
- оператор выбора selectcase.

Учашиеся должны уметь:

 программировать ветвящиеся алгоритмов с использованием условного оператора и оператора ветвления.

Тема 13. Программирование циклов

Учащиеся должны знать

- различие между циклом с предусловием и циклом с постусловием;
- различие между циклом с заданным числом повторений и итерационным циклом;
- операторы цикла whileu repeat until;
- оператор цикла с параметром for;
- порядок выполнения вложенных циклов.

Учащиеся должны уметь:

- программировать на Паскале циклические алгоритмы с предусловием, с постусловием, с параметром;
- программировать итерационные циклы;
- программировать вложенные циклы.

Тема 14. Подпрограммы

Учащиеся должны знать

- понятия вспомогательного алгоритма и подпрограммы;
- правила описания и использования подпрограмм-функций;
- правила описания и использования подпрограмм-процедур.

Учащиеся должны уметь:

- выделять подзадачи и описывать вспомогательные алгоритмы;
- описывать функции и процедуры на Паскале;
- записывать в программах обращения к функциям и процедурам.

Тема 15. Работа с массивами

Учашиеся должны знать

- правила описания массивов на Паскале;
- правила организации ввода и вывода значений массива;
- правила программной обработки массивов.

Учащиеся должны уметь:

- составлять типовые программы обработки массивов: заполнение массива, поиск и подсчет элементов, нахождение максимального и минимального значений, сортировки массива и др.

Тема 16. Работа с символьной информацией

Учащиеся должны знать:

- правила описания символьных величин и символьных строк;
- основные функции и процедуры Паскаля для работы с символьной информацией.

Учащиеся должны уметь:

 решать типовые задачи на обработку символьных величин и строк символов.

11 класс

Тема 1. Системный анализ

Учащиеся должны знать:

- основные понятия системологии: система, структура, системный эффект, подсистема;
- основные свойства систем;
- что такое системный подход в науке и практике;
- модели систем: модель черного ящика, состава, структурная модель;
- использование графов для описания структур систем.

Учащиеся должны уметь:

- приводить примеры систем (в быту, в природе, в науке и пр.);
- анализировать состав и структуру систем;
- различать связи материальные и информационные.

Тема 2. Базы данных

Учащиеся должны знать:

что такое база данных (БД);

- основные понятия реляционных БД: запись, поле, тип поля, главный ключ;
- определение и назначение СУБД;
- основы организации многотабличной БД;
- что такое схема БД;
- что такое целостность данных;
- этапы создания многотабличной БД с помощью реляционной СУБД;
- структуру команды запроса на выборку данных из БД;
- организацию запроса на выборку в многотабличной БД;
- основные логические операции, используемые в запросах;
- правила представления условия выборки на языке запросов и в конструкторе запросов.

Учащиеся должны уметь:

- создавать многотабличную БД средствами конкретной СУБД;
- реализовывать простые запросы на выборку данных в конструкторе запросов;
- реализовывать запросы со сложными условиями выборки.

Тема 3. Организация и услуги Интернет

Учашиеся должны знать:

- назначение коммуникационных служб Интернета;
- назначение информационных служб Интернета;
- что такое прикладные протоколы;
- основные понятия WWW: web-страница, web-сервер, web-сайт, web-браузер, HTTP-протокол, URL-адрес;
- что такое поисковый каталог: организацию, назначение;
- что такое поисковый указатель: организацию, назначение.

Учащиеся должны уметь:

- работать с электронной почтой;
- извлекать данные из файловых архивов;
- осуществлять поиск информации в Интернете с помощью поисковых каталогов и указателей.

Тема 4. Основы сайтостроения

Учащиеся должны знать:

- какие существуют средства для создания web-страниц;
- в чем состоит проектирование web-сайта;
- что значит опубликовать web-сайт.

Учащиеся должны уметь:

- создавать несложный web-сайт с помощью редактора сайтов.

Тема 5. Компьютерное информационное моделирование

Учащиеся должны знать:

- понятие модели;
- понятие информационной модели;
- этапы построения компьютерной информационной модели.

Тема 6. Моделирование зависимостей между величинами

Учащиеся должны знать:

- понятия: величина, имя величины, тип величины, значение величины;
- что такое математическая модель;
- формы представления зависимостей между величинами.

Учащиеся должны уметь:

- с помощью электронных таблиц получать табличную и графическую форму зависимостей между величинами.

Тема 7. Модели статистического прогнозирования

Учащиеся должны знать:

- для решения каких практических задач используется статистика;
- что такое регрессионная модель;
- как происходит прогнозирование по регрессионной модели.

Учащиеся должны уметь:

- используя табличный процессор строить регрессионные модели заданных типов;
- осуществлять прогнозирование (восстановление значения и экстраполяцию) по регрессионной модели.

Тема 8. Модели оптимального планирования

Учащиеся должны знать:

- что такое оптимальное планирование;
- что такое ресурсы; как в модели описывается ограниченность ресурсов;
- что такое стратегическая цель планирования; какие условия для нее могут быть поставлены;
- в чем состоит задача линейного программирования для нахождения оптимального плана;
- какие существуют возможности у табличного процессора для решения задачи линейного программирования.

Учащиеся должны уметь:

- решать задачу оптимального планирования (линейного программирования) с небольшим количеством плановых показателей с помощью табличного процессора (надстройка «Поиск решения» в Microsoft Excel).

Тема 9. Информационное общество

Учащиеся должны знать:

- что такое информационные ресурсы общества;
- из чего складывается рынок информационных ресурсов;
- что относится к информационным услугам;
- в чем состоят основные черты информационного общества;
- причины информационного кризиса и пути его преодоления;
- какие изменения в быту, в сфере образования будут происходить с формированием информационного общества.

Тема 10. Информационное право и безопасность

Учащиеся должны знать:

- основные законодательные акты в информационной сфере;
- суть Доктрины информационной безопасности Российской Федерации.

Учашиеся должны уметь:

соблюдать основные правовые и этические нормы в информационной сфере деятельности.

Требования к уровню подготовки выпускников

знать/понимать

- ✓ Объяснять различные подходы к определению понятия "информация".
- ✓ Различать методы измерения количества информации: вероятностный и алфавитный. Знать единицы измерения информации.
- ✓ Назначение наиболее распространенных средств автоматизации и информационной деятельности (текстовых редакторов, текстовых процессоров, графических редакторов, электронных таблиц, баз данных, компьютерных сетей.
- ✓ Назначение и виды информационных моделей, описывающих реальные объекты или процессы.
- ✓ Использование алгоритма как модели автоматизации деятельности
- ✓ Назначение и функции операционных систем.

уметь

- ✓ Оценивать достоверность информации, сопоставляя различные источники.
- ✓ Распознавать информационные процессы в различных системах.
- ✓ Использовать готовые информационные модели, оценивать их соответствие реальному объекту и целям моделирования.
- ✓ Осуществлять выбор способа представления информации в соответствии с поставленной задачей.
- ✓ Иллюстрировать учебные работы с использованием средств информационных технологий.
- ✓ Создавать информационные объекты сложной структуры, в том числе гипертекстовые.
- ✓ Просматривать, создавать, редактировать, сохранять записи в базах данных.
- ✓ Осуществлять поиск информации в базах данных, компьютерных сетях и пр.
- ✓ Представлять числовую информацию различными способами (таблица, массив, график, диаграмма и пр.)
- ✓ Соблюдать правила техники безопасности и гигиенические рекомендации при использовании средств ИКТ.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

- эффективной организации индивидуального информационного пространства;
- автоматизации коммуникационной деятельности;
- эффективного применения информационных образовательных ресурсов в учебной деятельности.

Описание учебно-методического и материально-технического обеспечения образовательного процесса

- Информатика. Базовый уровень : учебник для 10-11 классов Авторы: Семакин И. Г., Хеннер Е. К., Шеина Т. Ю. 2012г.
- Информатика. УМК для старшей школы: 10 11 классы (ФГОС). Методическое пособие для учителя. Базовый уровень. Авторы:Цветкова М. С., Хлобыстова И. Ю. 2013г.
- комплект Федеральных цифровых информационно-образовательных ресурсов (далее ФЦИОР), помещенный в коллекцию ФЦИОР (http://www.fcior.edu.ru);
- Сетевая методическая служба автора для педагогов на сайте издательства http://metodist.lbz.ru/authors/informatika/1
- Материалы для подготовки к итоговой аттестации по информатике в форме EГЭ, размещённые материалы на сайте http://kpolyakov.spb.ru/school/ege.htm;

Для реализации учебного курса «Информатика» необходимо наличие компьютерного класса.

Требования к программному обеспечению компьютеров

На компьютерах, которые расположены в кабинете информатики, должна быть установлена операционная система Windows или Linux, а также необходимое программное обеспечение:

- текстовый редактор (Блокнот) и текстовый процессор (Word или OpenOffice.org Writer);
- табличный процессор (Excel или OpenOffice.org Calc);
- средства для работы с базами данных (Access или OpenOffice.org Base);
- графический редактор Gimp (http://gimp.org);
- редактор звуковой информации Audacity (http://audacity.sourceforge.net);
- файловый менеджер (в составе операционной системы или др.).
- антивирусная программа.
- программа-архиватор.
- виртуальные компьютерные лаборатории.

- программа-переводчик.
- система оптического распознавания текста.
- мультимедиа проигрыватель (входит в состав операционных систем или др.).
- браузер (входит в состав операционных систем или др.).
- программа интерактивного общения
- простой редактор Web-страниц